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Abstract

External bonding of fibre reinforced polymer (FRP) composites has become a popular technique for strengthening
concrete structures all over the world. The performance of the interface between FRP and concrete is one of the key
factors affecting the behaviour of the strengthened structure. Existing laboratory research has shown that the majority
of reinforced concrete (RC) beams strengthened with a bonded FRP soffit plate fail due to debonding of the plate from
the concrete. Two types of debonding failures have been commonly observed: plate end debonding and intermediate
crack induced debonding. In order to understand and develop methods to predict such debonding failures, the bond
behaviour between concrete and FRP has been widely studied using simple shear tests on FRP plate/sheet-to-concrete
bonded joints and a great deal of research is now available on the behaviour of these bonded joints. However, for inter-
mediate crack induced debonding failures, the debonding behaviour can be significantly different from that observed in
a simple shear test. Among other factors, the most significant difference may be that the FRP plate between two adja-
cent cracks is subject to tension at both cracks. This paper presents an analytical solution for the debonding process in
an FRP-to-concrete bonded joint model where the FRP plate is subject to tension at both ends. A realistic bi-linear
local bond-slip law is employed. Expressions for the interfacial shear stress distribution and the load-displacement
response are derived for different loading stages. The debonding process is discussed in detail. Finally, results from
the analytical solution are presented to illustrate how the bond length affects the behaviour of such bonded joints. While
the emphasis of the paper is on FRP-to-concrete joints, the analytical solution is equally applicable to similar joints
between thin plates of other materials (e.g. steel and aluminium) and concrete.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

External bonding of fibre reinforced polymer (FRP) plates or sheets (referred to as plates hereafter for
simplicity) has emerged as a popular method for the strengthening or retrofitting of reinforced concrete
(RC) structures (Hollaway and Leeming, 1999; Teng et al., 2002a, 2003a). In this strengthening method,
the performance of the FRP-to-concrete interface in providing an effective stress transfer is of crucial
importance. Indeed, a number of failure modes in FRP-strengthened RC members are directly caused
by interfacial debonding between the FRP and the concrete. One of the failure modes, referred to as inter-
mediate crack induced debonding (IC debonding), involves debonding of the FRP plate which initiates at a
major crack and propagates along the FRP-to-concrete interface (Fig. 1). In RC beams flexurally strength-
ened with a tension face FRP plate, IC debonding may arise at a major flexural crack or flexural-shear
crack (Leung, 2001; Sebastian, 2001; Teng et al., 2003b; Yao et al., 2005a). IC debonding can also arise
as a result of a shear crack in RC beams shear-strengthened with FRP (Chen and Teng, 2003). In IC deb-
onding, the interface is dominated by shear stresses, so the debonding failure is also referred to as Mode 11
fracture in the context of fracture mechanics.

In RC beams bonded with a tension face plate, debonding is also likely at the plate ends where debond-
ing is due to a combination of high shear stresses and high normal stresses (Smith and Teng, 2001, 2002a,b,
2003; Shen et al., 2001; Yang et al., 2003; Pesic and Pilakoutas, 2003; Teng et al., 2002b). It should be noted
that while the emphasis of the paper is on FRP-to-concrete joints, the analytical solution is equally
applicable to similar joints between thin plates of other materials (e.g. steel and aluminium) and concrete.
Indeed, debonding failures of RC beams bonded with steel plates have also been studied extensively in the
literature (Roberts, 1989; Oehlers, 1992, 2001).

The above-mentioned IC debonding failure may be divided into two types. The first type has the feature
that debonding initiates from a crack where the plate is under tension and propagates towards the free end
of the plate. There is no crack between the free end of the plate and the crack where debonding initiates.
This first type of debonding approximates closely IC debonding that arises from a shear crack in RC beams
shear strengthened with bonded side plates, and debonding in soffit plated beams which has a single dom-
inant flexural or flexural-shear crack. The stress state of the interface in these cases is similar to that in a
simple pull test specimen in which a plate is bonded to a concrete prism and is subject to tension at one
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Fig. 1. Forces in an FRP plate bonded to a cracked RC beam.



5752 J.G. Teng et al. | International Journal of Solids and Structures 43 (2006) 5750-5778

end of the plate (Chen et al., 2001; Chen and Teng, 2001; Yuan et al., 2004). A large number of studies have
been carried out on these simple pull tests on bonded joints and further information on this work can be
found in Chen and Teng (2001), Wu et al. (2002), Teng et al. (2002a), Yuan et al. (2004). These studies sug-
gest that the main failure mode of FRP-to-concrete joints in simple pull tests is concrete failure under shear,
occurring generally in the concrete at a few millimetres from the concrete-to-adhesive interface. The ulti-
mate load (i.e. the maximum transferable load) of the joint therefore depends strongly on concrete strength.
A very important aspect of the behaviour of these bonded joints is that there exists an effective bond length
beyond which an extension of the bond length cannot increase the ultimate load (Chen and Teng, 2001).
Yuan et al. (2004) presented an analytical solution for the prediction of the entire debonding propagation
process, which provides not only a rigorous and complete theoretical basis for understanding the full-range
load—displacement behaviour of FRP-to-concrete bonded joints but also a method for identification of
interfacial properties using experimental load—displacement responses. Both issues are important for the
correct modelling of the FRP-to-concrete interface which is the key for the accurate prediction of the ser-
viceability and ultimate behaviour of FRP-strengthened RC members.

In normal RC beams bonded with an FRP soffit plate, a series of cracks are generally distributed
along the length of the beam. As a result, between the major flexural or flexural-shear crack where deb-
onding initiates and the stress-free ends of the plate, other cracks exists. The mechanics of the debonding
process in such beams can be significantly different from that of a simple pull test specimen as discussed
above. These failures may be termed the second type of IC debonding failures to distinguish them from
the first type of IC debonding failures. The behaviour of the FRP-to-concrete interface between two adja-
cent cracks may be idealised as the simple model shown in Fig. 2. The model resembles closely that of a
simple pull test. Their chief difference lies in that both ends (i.e. at both cracks) of the FRP plate are now
subject to tension in this model. Little attention has been paid to the failure of such a bonded joint
model.

This paper presents an analytical solution for this simple FRP-to-concrete bonded joint (Fig. 2) to
predict and better understand the behaviour of the FRP-to-concrete interface between two adjacent cracks,
where the FRP plate is subjected to different tensile forces at the two ends whilst the concrete prism is sub-
jected to two different axial forces, which may be tensile or compressive, at the two ends. A bilinear bond-
slip model provides a close representation of the bond-slip behaviour of FRP-to-concrete interfaces (Yuan
et al., 2004), and such a realistic bi-linear local bond-slip model is employed for the prediction of the entire
debonding propagation process in the model. Numerical examples are presented to illustrate the different

X (Plate 5 |

«— —
P, . Py
—| |t Concrete prism <«
Adhesive P4 P3
(@)

Concrete prism

be by Plate

(b)

Fig. 2. Idealized model of FRP-to-concrete bonded joint between two adjacent cracks. (a) Elevation; (b) plan.
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failure processes that may happen in such bonded joints. The results of this study shall provide valuable
insight into the behaviour of IC debonding failures in flexurally strengthened RC structures.

It should be noted that the term “ultimate load”, which is the maximum load capacity of the joint, is
used in this paper instead of “bond strength’ to avoid confusion with the local bond strength of the
interface.

2. Governing equations

The plate in the plate-to-concrete bonded joint model as shown in Fig. 2 is subject to two tensile forces,
P at the right end and P, at the left end. Without loss of generality, it is assumed that P; > P, > 0. The
concrete prism is assumed to be subject to two forces P and P4 which can be either compressive or tensile.
Note that P; and P, are assumed to be positive when they are tensile, whilst Py and P, are assumed to be
positive when they are compressive. It is also assumed that all these forces remain proportional to each
other throughout the loading process. The width and thickness of the plate are denoted by b, and ¢, respec-
tively, and those of the concrete prism by b, and z., respectively. They are assumed to be constant along the
length. The bonded length of the plate (i.e. bond length) is denoted by L. The Young’s modulus of the plate
and concrete are E, and E, respectively. The adhesive layer is assumed to have a constant thickness and the
whole model is in a plane stress state.

The adhesive layer in such a model is mainly subject to shear deformations. In the present analysis, the
deformation of the actual adhesive layer and those of a thin layer of adjacent concrete is lumped together
and referred to as the deformation of the interface. Clearly, the failure mode of the interface is predomi-
nantly mode II interfacial fracture. A simple mechanical model for this bonded joint may thus be estab-
lished by assuming that the plate and the concrete prism (the two adherends) are subject to axial
deformation only while the interface is subject to pure shear deformation only. That is, all bending defor-
mation of both adherends is neglected and the shear stress across the thickness of the adhesive layer is
constant.

A horizontal coordinate system originating from the left end of the adhesive layer is adopted (Fig. 2).
The left and right ends of the adhesive layer are termed the left loaded end and the right loaded end, respec-
tively, in this paper, which are also referred to as the left end and the right end for simplicity.

Similar to simple FRP-to-concrete pull tests (Yuan et al., 2004), equilibrium considerations can lead to
the following fundamental equations using the above assumptions (Fig. 3):

do,

“P_ 1
dx ¢, (1)
Uplpbp+0ctch:P:P1—P3:P2—P4 (2)

where 7 is the shear stress in the adhesive layer, o, is the axial stress in the plate and o, is the axial stress in
the concrete prism.
The constitutive equations for the interface and the two adherends can be expressed as

©=/(0) 3)
du,

O'p = Ep a (4)
du,

0. — EC a (5)

In Eq. (3), the interfacial slip 0 is defined as the relative displacement between the two adherends:
0 =u, — u (6)
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Fig. 3. Deformation and stresses.

Substituting Egs. (2)—(6) into Eq. (1) and introducing the parameters of local bond strength 7 and interfa-
cial fracture energy Gy yield the following governing differential equation:

d* 26 ,
G g =0 7

and the plate stress

2
on do P

_ do 8

7 T 3G, (dx * bCECtC> (8)
where
2

2 T 1 b,
TR (Eptp + bcEctc> 9)

Eq. (7) may be solved if the local bond-slip model f{0) relating the local interfacial shear stress 7 to the
local shear slip o0 is defined. The interfacial fracture energy Gy, representing the area under the local
bond-slip curve, is introduced because it may be used without knowing the exact shape of the local
bond-slip curve.

3. Local bond-slip model

Various bond-slip models have been considered in previous work. Recent experimental and theoretical
studies have shown that the bilinear model as shown in Fig. 4 which features a linear ascending branch fol-
lowed by a linear descending branch represents a close approximation (Yuan et al., 2004). In this model, the
bond shear stress increases linearly with the interfacial slip until it reaches the peak stress 7y at which the
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Fig. 4. Local bond-slip model.

value of the slip is denoted by d;. Interfacial softening (or micro-cracking) then starts with the shear stress
reducing linearly with the increase of the interfacial slip. The shear stress reduces to zero when the slip
equals Jy, signifying the shear fracture (or debonding or macro-cracking) of a local bond element. The
absence of any residual shear strength after debonding implies that friction and aggregate interlock in
the debonded area is ignored. Considering both positive and negative slips, the bond-slip model as shown
in Fig. 4 can be mathematically described by the following equation:
ga when 0 < |9] < 3,

1

T
—(0f —0) when 6, <0<d
ROBR =i 1 f (10)

T (—6—0) when — & << -0
3 — o)
0 when |8 > d;

It may be noted that before the slip reaches the ultimate value +0d¢, the bond-slip relationship is assumed to be
fully reversible when local unloading is experienced. Note that this assumption is true when the bond is still
elastic but cannot be satisfied in practice if the bond has entered the softening stage. However, in the present
case, local unloading after softening only occurs in a very small zone at one end of the bond length (Fig. Se).
Therefore, this assumption can significantly simplify the analysis without significant loss of accuracy.

4. Analysis of the debonding process
4.1. Loading stages up to failure

Once the bond-slip model is defined, the governing Eq. (7) can be solved to find the shear stress distri-
bution along the interface and the load—-displacement response of the bonded joint in Fig. 2. At a certain
loading level, a given location of the interface may be in one of the three possible states: (1) elastic (State I);
softening (State II) and debonded (State III). For convenience of reference, the interface is said to be in an
elastic state (or E state) if the whole interface is elastic (Fig. 5a); in elastic—softening (E-S) state if the left
part of the interface is in the elastic state whilst the right part is in the softening state (Fig. 5c); in the soft-
ening—elastic—softening (S—-E-S) state if it is in softening, elastic and softening states from the left to the
right, respectively (Fig. 5¢), and so on.
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Fig. 5. Interfacial shear stress distributions at various stages (reference case). (a) Elastic stress state (OA in Fig. 7). (b) Initiation of
softening at x = L (point A in Fig. 7). (c) Propagation of softening zone (AB in Fig. 7). (d) Initiation of softening at x = 0 (point B in
Fig. 7). (e) Propagation of both softening zones (BC in Fig. 7). (f) Initiation of debonding at x = L (point C in Fig. 7). (g) Propagation
of debonding (CD in Fig. 7). (h) Disappearance of softening at x = 0 (point D in Fig. 7). (i) Propagation of debonding (DE in Fig. 7).
(j) Peak shear stress at x =0 (point E in Fig. 7). (k) Linear unloading (EF in Fig. 7).
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During the whole loading process, the interface may experience all or some of the following stages
dependent on various parameters:

(a) elastic stage: the whole interface is linearly elastic (6 < ;) when the applied loads are small;

(b) elastic—softening stage: as the loads increase, the interface near one or both ends enters the softening
state (0, < 0 < dp) while the rest is still linearly elastic;

(c) elastic—softening—debonding stage: when the loads further increase, debonding (§ > J) occurs at one
end;

(d) softening—-debonding stage: debonding has progressed so far that no elastic zone remains for the
whole interface;

(e) softening stage: when the bond length L is very small.

The solutions for all stages are presented below. The interfacial stress distributions and debonding prop-
agation for a typical failure process as illustrated in Fig. 5 are used here to illustrate some typical stages.
Detailed debonding analysis is illustrated through numerical examples later in the paper.

4.2. Elastic stage
When the loads are small, the whole interface is in an elastic stress state (Fig. 5a). This is true as long as

the interfacial shear stress 7 < 17 (or d < 01) at x = L. Substituting Eq. (10) for the case of || < d; into Eq.
(7) gives the following differential equation:

d’s
g A0 =0 (11)
where
2Gy t 1 b
2 02U w1 b
=4 ity 0p (Eptp +bcEctC> (12)
Using the following boundary conditions
Py
= — — 1
op bty atx=0 (13)
P
thP

the interfacial slip, interfacial shear stress and axial stress in the plate can be found by solving Eq. (11)

0 il + Ps ! P + il ! cosh(4;x)
= — - - X
boEpt,  beEct.) 2y sinh(4,L) bpoEpt,  beEct.) Ay tanh(4L) !

+( P | P )ismh(m) (15)

boEpty  beEcte)
Tf P1 P3 1 P2 P4 1
_T _ h(2
s Kprptp * bcEth> Jnsinh(iL) (prptp * bcEctC) Py tanh()vlL)] cosh(ix)
‘Ef Pz P4 1
<b o bEd ) — sinh(4;x) (16)

3 1 Pz P4 1 .
- h
{Kb E | hE zc) nh(4.L) (prptp +bcEctC) tanh(zlL)] sinh(4x)
_l’_

] P
+ cosh(4;x 17
(b Enty b Ectc> (1) bcEctc} 262, (7
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The slip at the right end (i.e. 6 at x = L) and that at the left end (i.e.  at x = 0) may be denoted by 4, and
Ao, respectively. These are relative displacements between the plate and the substrate at x =0 and x = L,
are referred to as displacements in the rest of the paper. Their relationships with the loads can be obtained
from Eq. (15):

P, Ps 1 P, P, 1
o = - 1
0 (prpzp + bcEctc) T sinh(iL) (prptp * bcEctc) 7 tanh(iL) (18)
Pl P3 1 P2 P4 1
4= - 1
’ (prptp * bcEctc> 7 tanh(iL) (prp;p * bcEctc) T sinh(AL) (19)
Let
P, = pP, (20)
P3 = i’[P] (21)

P, and P = P, — P; can be expressed in terms of § (f < 1), y and P, from Eq. (2):

Py=(p+n—-1)P (22)
P=(1-nP, (23)
Using Eqgs. (20)—23), Egs. (18) and (19) can be expressed as

1 n 1 B p+n—1 1

Ay = - P 24

0 Kprptp * bcEth> 7y simnh(AiL) (prpzp T hEa ) itanh(4L)) (24)
1 n 1 B B+n—1 1

A= — P 25

! Kprptp + bcEctC> 7 tanh(iL) (prptp T hEa, ) ismh(iL)] ! (25)

It is evident that 4, > |4¢|. Therefore, with the increase of load, softening appears either firstly at x = L or
simultaneously at x =0 and x = L, depending on whether <1 or f=1.

4.3. Elastic—softening stage

Once the shear stress 7 reaches tpat x = L (4; = ) (Fig. 5b), the interface there enters the softening state
(State IT) while the rest remains elastic (State I) (Fig. 5c). There are three possible processes: (a) when =1,
softening appears simultaneously at both ends; (b) when f is small, the length of the softening zone at the
right increases with the load and this process continues until debonding appears at x = L while the interface
remains elastic at x = 0; (c) for other f values softening appears firstly at x = L and then appears at x =0
before debonding appears at x = L (Fig. 5d). Therefore, the interface can be in either elastic—softening
(E-S) state (Fig. 5c) or softening—elastic-softening (S-E-S) state (Fig. 5e), with (a) being a special (anti-
symmetrical) S-E-S interface. Solutions for both interfaces are considered as follows.

The following governing equations for the elastic—softening stage can be obtained by substituting rele-
vant relationships in Eq. (10) into Eq. (7):

d’

2~ 40 =0 for 0< o] <o (26)
2

g+ 158 = 136; for §; <8 < & (27)
2

do 138 = =230 for — & <9< —d, (28)

dx2
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where

2G, T 1 b
=7 = [t 2
2T G — o o -0 T hEd (29)

4.3.1. Elastic—softening (E-S) interface

Assuming that the softening length at right is «a, the elastic zone length at left equals L-a (Fig. 5¢). The
solutions to Egs. (26) and (27) are of similar form to Egs. (15)—(17) and can be derived using the following
boundary conditions:

P,
Gp:% atx=20 (30)
o, is continuous atx =L —a (31)
d=dort=17 atx=L-—a (32)
Py
O'p:% atx =1L (33)

The solution for the elastic region of the interface [0 < 0 < d; within 0 < x < L — a] is given by

5 51 (P, P
~ |cosh[A (L —a)] A1 \bpEpty = beEct.

) tanh(4,L — ila)} cosh(4;x)

L/ P Py \ .
R <bp Eyty | beEel ) sinh(4) (34)
AT tanh(A L — Jya)| cosh(4x)
"~ 8y |cosh[Z; (L — a)] /1] b b 1 1a 1X

Tf 1
+5—] o (b >smh (35)

)Ll PZ P4 .
tanh(J1L — / h(’
o= 2Gftp,12 { [cosh A (L A (prptp+bcEth> anh(/; 1a)} sinh(4;x)
1 P, p
h -

o (prptp  beEu ) cosh(%1x) + lbcEctc} (36)

and that for the softening region of the interface [6; < J < Jf within L — a < x < L ]is given by

M 1/ P P 1 .
_ h 2 a(r— L
0 {/12 o1 tanh{Zi (L —a)l + (prptp + bcEctc> cosh[7 (L — a)]} sinflalx = L+ a)]

+ (8 — 6¢) cos[Ay(x — L+ a)] + ¢ (37)
_ T 1 . .
T= 5 s, { or tanh[A4 (L —a)] + — <b ot b z fc> cosh[/ ]} sin[ly(x — L + a)]
+ trcos[A(x — L + a)] (38)
2
N ‘L'f)Q ;»1 1 J) _
o= 2Git, i { [/12 drtanh{(L —a)]+ 7 22 (b Ept, b E tc> cosh[4 J coslalx — L +a)

(81 — o) sin[la(x — L + a)] + (39)

)
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Substituting Eq. (33) into Eq. (39) yields

)451 Sil’lh[l] (L — a)} COS(lza) + )\,2(51‘ — 51) COSh[i] (L — a)] sin()vza)
m [cosh(A4L — A1a) — Bcos(la)] + 2 [ncosh(L L — Zia) — (B + 1 — 1) cos(4a)]

beEctc

P =

The displacement at x =0 and x = L can be obtained from Egs. (34) and (37), respectively

01 1 B f+n—1 .
P, tanh(4,L —
(prptp * b.Et. 1 tanh(% 4ia)

Ay =
"7 cosh[ (L —a)] 7

A 1/ B B+y—1 1 .
A, = 4215, tanh (2 (L — a)] + —
: {xzé‘ tanh{ (L —a)] + 7 (prp¢p+ ke ) cosnm L —a)y) SR

+ (51 — 5{) COS(iza) + 51‘

4.3.2. Softening—elastic—softening (S—E-S) interface

(40)

Let the lengths of the softening zones at left and right equal e and «a, respectively (Fig. 5¢). The solutions

to Egs. (26)—(28) can be obtained by using the following boundary conditions

P
ap:—z atx=0
thP

o, 1s continuous atx =e andx=L —a
d=—-0,ort=—7 atx=e
0=0,ort=1 atx=L—a
op = kil atx=1L
tP P
The solution for the left softening region of the interface [0 < d < d; within 0 < x < e] is given by

o= %&tanh*l Bil(L —a— e)] sin[A2(x — e)] + (df — 01) cos[Aa(x — e)] — O¢
2

T= —rf%tanh*1 B ML —a-— e)} sin[/,(x — e)] — trcos[Ar(x — €)]
1

2

_
2Git, )’

O'p:

{iléltanhl B)ﬂ (L—a— e)} cos[Ay(x — e)] — Z2(0f — 1) sin[Ay(x — e)] + bcgctc}

The solution for the elastic region of the interface [0 < ¢ < 07 within e < x < L — a] is given by
1
d = —d, cosh[4;(x — e)] + d;tanh ™" {521 (L—a-— e)} sinh[4; (x — e)]

© = —1;cosh[4; (x — e)] + trtanh ™’ B/II(L —a-— e)] sinh[4; (x — e)]

_ T
2Gity )

1
oy —&iﬁmMM@—eﬂ+&MMMIﬂihu—a—eﬂcmMM@—eﬂ+bEt
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and that for the right softening region of the interface [0; < < ; within L — a < x < L] is given by

5= %(Xtanh*l B/l] (L—a-— e)} sin[Aa(x — L+ a)] + (01 — o) cos[la(x — L + a)] + J¢ (54)
2
12 —1 l . " a
7= —rf/l—tanh 521 (L—a—e)|sin[iy(x — L+ a)] + trcos[Ar(x — L + a)] (55)
1
4

1 P
=—* 28 tanh |0 (L—a— Jolx —L S — 8) A sinfia(x — L
op 2Gftp/12{ j0rtan {2 (L—a e)] cos[Ay(x — L+ a)] + (6 — 1) Az sinfAy(x +a)]+bcEth}

(56)

Substituting Eq. (43) into Eq. (50) and Eq. (47) into Eq. (56) yields two simultaneous equations relating
load P; to softening zone lengths e and a

P = zz[ LAY B 1] B X {ﬁaltanhl EAI(L —a— e)] cos(Are) + (0 — 0)) sin(zze)} (57)

boEpt, beEt. A2
1 (A N .
Pi=X [prptp + bcgctc] X {ié)ltanh 1 [5 (L —a— e)} cos(Aa) + (6f — 1) mn(iza)} (58)

The displacements at x =0 and x = L can be obtained from Egs. (48) and (54):
Ay = —j—;&tanh’l Bil (L—a-— e)] sin(4e) + (8¢ — 6,) cos(Lre) — O¢ (59)
4= %&tanh’l B WL —a- e)} sin(12a) + (31 — t) cos(aa) + 6 (60)
If f =1, comparing Eq. (57) with Egs. (58) and (59) with Eq. (60) gives that e = a and 4, = A,.
4.4. Elastic—softening—debonding stage

The three types of interface considered in the previous section, including the elastic—softening—debond-
ing (E-S-D) interface (5 is small), the softening—elastic—softening—debonding (S—-E-S-D) interface (f is not
small) and the debonding-softening—elastic—softening—debonding (D-S-E-S-D) interface (f =1), are also
considered here.

4.4.1. Elastic—softening—debonding ( E-S-D) interface
This interface can be developed from the E-S interface above. Its stress distribution has the form shown
in Fig. 5h. Debonding initiates when 4; = d;. Solving the following equations obtained from Egs. (40) and
(42) gives the length of the softening interface a, denoted by aq4, at the initiation of debonding:
101 sinh[A; (L — aq)] cos(Aaaq) + 42(0r — 1) cosh[A (L — aq)] sin(Ayaq)
5o [osh(AiL — diaq) — Peos(draa)] + 55 [ncosh(iiL — diaq) — (B +n — 1) cos(izaq)]

_ /12(51" — 51) COS(/Izad) COSh[)L] (L — ad)] — /1151 sin(/lzad) Sil’lh[)q (L — ad)]

B B+n—1 :
(—bpéptp + —/bcgctc) sin(aq)

Py = (61)

P

(62)

As debonding propagates, the length of the intact interface reduces and the peak shear stress ty moves
towards the left. A given location along the interface can be elastic (State I), softening (State II) or
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debonded (i.e. stress-free) (State I1T). Assuming that the debonded length of the interface starting at x =
L is d, Egs. (34)—(39) are still valid for the E-S-D interface here if L is replaced by (L — d). Similarly,
Eqgs. (61) and (62) remain valid during the debonding process if L is replaced by (L — d) and aq is replaced
by a.

The displacement at x = L during the debonding process can be obtained from

1 n
A;=96 —— |Pid 63

pmort (prpzp * bcEctC) : (63)
As debonding propagates further, the peak shear stress 7y moves continuously towards the left. The stage is
completed when the peak shear stress 7 moves to x = 0 so that the elastic zone disappears. The length of the
softening interface at this stage, a, = L — d, is termed the characteristic softening length here, and can be
obtained as

B BAn—1
1 +
a, = — arccos (h"E"fp bcEd‘) (64)

1 n
A2 boEpty | beEele

4.4.2. Softening—elastic—softening—debonding (S—-E-S-D) interface

For a S-E-S interface, it becomes a S-E-S-D interface (Fig. 5g) when debonding initiates at x = L
(4, = 0¢) (Fig. 5f). The corresponding softening length @, denoted by a4, can be found from the following
equations which are obtained from Egs. (57), (58) and (60)

B B+n—1]"cos[is(aa - e)]
Py =2(0— 9 65
! 2(0r 1) {prptp + b.E.t, sin(4aq) (65)
1 n 171
Py =2y(0— 9 66
! 2(0r v {prptp + bcEctj sin(/yaq) (66)
tan(/lgad) = g tanh |:1;Ll (L —daq — e)] (67)
V%) 2

As debonding propagates, the peak shear stress t¢ near the right end moves towards the left. Under the
assumption that the whole local bond-slip relationship before debonding is fully reversible during unload-
ing, the peak shear stress 7y near the left end also moves towards the left to x = 0 and the left softening zone
experiences unloading whilst the actual applied load increases. Let the debonded length of the interface at
the right end equal d, Eqgs. (48)—(56) remain valid if L is replaced by (L — d). The load—displacement rela-
tionship can still be expressed as Eq. (63). As the interfacial shear stress is zero for x > L — d, the three
equations relating P; to a, e and d can be obtained from Egs. (65)—(67) if L is replaced by (L—d) and aq4
is replaced by a. From Egs. (65) and (66), the relationship between a and e for the S-E-S-D interface
can be obtained as

e:a—au (68)

The S-E-S-D interface reduces to an E-S-D interface (Fig. 5i) after the softening length at the left e re-
duces to 0 (Fig. 5h). Substituting e = 0 into the three equations relating P, to a, e and d yields P;, a and
d when E-S-D interface begins, which can be analysed as in the preceding section.

4.4.3. Debonding—softening—elastic—softening—debonding ( D-S—-E-S-D) interface

When f =1, debonding can start from both ends simultaneously and propagate towards the middle of
the interface. At the initiation of debonding 4; — 4y = ér. The corresponding value of a = ¢, denoted by ay,
can be obtained from the following equations which are derived from Egs. (58) and (60)
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Plzxz(éf—él)[ Lo, ! (69)

-1
prplp bcEch:| sin(/lzad)
) 1
tan(lray) = )—‘ tanh {5 (L — 2ad)] (70)
()

As debonding propagates, the peak shear stress 7 at left and right moves towards the middle of the inter-
face (x = L/2). Assuming that the debonded length of the interface at both ends is d, Egs. (48)—(56) are valid
if L is replaced by (L — 2d). Therefore, the load—displacement relationship can still be expressed as Eq. (63).
As the interfacial shear stress at x = d and x = L — d is zero, the two equations relating P; to a and d can be
obtained from Egs. (69) and (70) if L is replaced by (L — 2d) and aq is replaced by a.

4.5. Softening—debonding stage

The softening-debonding stage (Fig. 5k) is governed by Eq. (27) with the following boundary
conditions

P
ap:—2 atx=0 (71)
byt,
Py
0=0dand gy =—— atx=a=L—-d (72)
tpby

The solution for the softening region of the interface [0 < d < dp within 0 < x < a,] can be found as

1 s i
a = a, = — arccos ("f"’—ﬂf) (73)

A BoEnty T BeEels
5= —%2 (l%;m 5 thc)P‘ Sin(Jady — 22%) (74)
T zz(afrf— 5) (bp;ptp * bcgctc) Prsin(aay = /%) (75)
= zGﬁpzz Kbpgptp * bcgct) cos(faau = 42x) + ;;:’ P (76)

Eq. (73) shows that the length of the softening zone remains constant during the softening-debonding
stage. During this stage, the maximum interfacial shear stress v at x =0 reduces linearly with the load.
The displacement at the right end can be obtained from

1 n
A, = o + +— |Pi(L—ay 71
! f (prptp bcEclc) l( “ ) ( )

Eq. (77) indicates that the displacement reduces linearly with the load.
4.6. Softening stage

If the bond length is so short that L < a,, the interface will experience elastic, elastic—softening, soften-
ing, and linear unloading stages. The softening—debonding stage does not happen during the failure pro-
cess. At the softening stage, the whole interface is in a softening state and is governed by Eq. (27) with
the following boundary conditions:
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P

0p=— atx=0 (78)
thP
P

op=—— atx=1L (79)
thP

The following solution for this stage [0; < 6 < dp within 0 < x < L] can thus be found

B +ﬂ+n—1
boEpty ' beEcl,

5_&+1<

> P1 sin(izx)
e

L[/ B Bpen—1) 1 1 " 1 A
+b[@ﬁw+ bEae ) @n(hl)  \boEoy | beue) sin(aD)) Lt eOsU2Y) (80)

¢ 1 ﬁ ﬁ + n— 1 . \
=_ — P
ER A" {7»2 (prptp t pEa ) Frsin(ay)

L[ B Btn—1\ 1 1 . 1
L - P 1
+@{Q@y;%b£% >mm&m (%@%+magsmug)l“ﬂbﬂ ®1)

2 1
op = ki - {( p + frn cos (/)
2GytyA boEpty b.E.t.

B p+n—1 1 1 n 1 . 1-p
- - A P 82
m@ﬁ+bﬁk wn(al) ~ \bEoty T BB ) sintiny) Y g P (82)

During this stage, the maximum interfacial shear stress at x = 0 reduces with the load. The displacement 4,
at the left loaded end can be obtained from Eq. (80) by setting x = 0. The load at the beginning of this stage
can be found by setting 4o = ¢, in Eq. (80)

Pl _ (5{ — 5])/L2 Sll’l()sz) (83)

(hpEl_Ptp + %) [1 — cos(4ray) cos(AL)]

The displacement 4, at the right loaded end (x = L) can also be obtained from Eq. (80)

1 n cos(Aay) P,
A = — _
1= 0r (prptp + bcEctc> {1 cos(/lzL)} Axtan(A,L) (84)

Eq. (84) indicates that the displacement at the right end increases linearly with the reduction of the
load.

5. Full-range load—displacement analysis

Fig. 6 shows the analysis flowchart for the FRP-to-concrete bonded joint model considered, where five
different failure processes are identified. Depending on the geometrical, material and loading parameters,
the left end of the model may or may not enter softening and debonding. For a joint model with a given
set of parameters, the analysis starts with an elastic interface, and then follows different routes according to
the criteria indicated in Fig. 6. Appropriate solutions for different interfaces at various stages presented
above shall be used here. Detailed stress distributions along the interface at various stages and the whole
load—displacement curve can be obtained from this process.
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Fig. 7. Full-range load—displacement curve (reference case).
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6. Failure processes and numerical examples

The five failure processes identified above are analysed here. Four numerical examples are also presented
to illustrate failure processes 2-5 (Fig. 6) and their corresponding load—displacement responses of the plate-
to-concrete bonded joint model. The effects of the load parameter f# and the bond length on the ultimate
load are also discussed. The following reference parameters, which were used in a series of simple pull tests
of FRP-to-concrete bonded joints by Yao et al. (2005b), are used in all the examples unless otherwise
stated: £, =0.165mm, b,=25mm, ¢ =150mm, b,=150mm, E,=256GPa, E.=28.6GPa and

7, =29 MPa. The local bond-slip parameters for a typical specimen were deduced from the experimental
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Fig. 8. Interfacial stress distributions at various stages (f = 0.99). (a) Early stages and (b) final stages.
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load—displacement curve as Yuan et al. (2004): 6;=0.16 mm, J; =0.034 mm, z;=7.2MPa and
Gy = 0.58 N/mm. Unless otherwise stated, f = 0.8 and # = 1 are used. A bond length of L = 100 mm, which
represents a typical crack spacing in reinforced concrete beams (Piyasena et al., 2004), is used unless other-
wise indicated. From Eq. (64), the characteristic softening length a, = 17.48 mm for these parameters.

6.1. Failure process 1 (small f and L > a,,)

Failure process 1 in Fig. 6 (small f and L > a,) is similar to that of a simple pull test of FRP-to-concrete
bonded joints with a load applied at the right end only (f = 0), in which softening does not happen at the
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Fig. 9. Interfacial shear stress distributions at various stages (L = 25 mm). (a) Elastic stress state (OA in Fig. 10). (b) Initiation of
softening at x = L (point A in Fig. 10). (c) Propagation of softening zone (AB in Fig. 10). (d) Initiation of softening at x = 0 (point B in
Fig. 10). (e) Propagation of both softening zones (BC in Fig. 10). (f) Disappearance of softening at x =0 (point C in Fig. 10). (g)
Propagation of softening zone (CD in Fig. 10). (h) Initiation of debonding at x = L (point D in Fig. 10). (i) Propagation of debonding
(DE in Fig. 10). (j) Peak shear stress at x =0 (point E in Fig. 10). (k) Linear unloading (EF in Fig. 10).
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left end (Yuan et al., 2004). When loaded to failure, the interface experiences the elastic, elastic—softening,
elastic—softening—debonding, softening—debonding, and linear unloading states sequentially. More details
can be found in Yuan et al. (2004).

6.2. Failure process 2 (0 < <1 and L>> a,)

Fig. 5 shows the interfacial shear stress distributions and propagation of debonding for the reference
case described above with L = 100 mm and f = 0.8. The corresponding full-range load—displacement curve
is shown in Fig. 7. When the loads are small, the entire interface is in an elastic state (Fig. 5a and OA in
Fig. 7). This remains valid as long as 7 at the right end (x = L) is smaller than t.. Eq. (25) indicates that the
load—displacement relationship is linear at this elastic stage. Softening initiates at the right end once
reaches 7; at x = L (Fig. 5b and point A in Fig. 7). As load P, increases (all other loads increase propor-
tionally), the peak shear stress 7o moves towards the left and the softening zone length a increases. The inter-
face is in an elastic—softening state (Fig. 5c and AB in Fig. 7). The magnitude of the interfacial shear stress
at x = 0 increases gradually. Softening initiates at x = 0 when t attains —7; there (Fig. 5d and point B in
Fig. 7). As load P; and the length of softening zone a continue to increase, the length of the softening zone
e at the left also increases (Fig. Se and BC in Fig. 7). As P; and «a further increase, the value of e will reach
its maximum value after which unloading happens in the softening zone at the left and e decreases. The
unloading in the left softening zone can happen either before or after debonding at the right end starts,
depending on many factors such as the geometry of the bonded joint, the FRP and concrete material
properties and the load ratio P»/P;.

Debonding initiates at the right end when the interfacial shear stress there decreases to 0 (Fig. 5f and
point C in Fig. 7) and debonding propagates towards the left thereafter. The interface is now in the soft-
ening—elastic—softening—debonding state. The left peak shear stress 7 moves towards x = 0, and e reduces
gradually whilst P; continues to increase (Fig. 5¢ and CD in Fig. 7). After e reduces to 0 (left peak shear
stress t¢ moves back to x =0 (Fig. 5h and point D in Fig. 7)), the interface enters an elastic—softening—
debonding state (Fig. 5i and DE in Fig. 7). The ultimate load P; is attained at this stage. It may be noted
that P; equals P, plus the summation of shear stresses along the interface so the maximum value of P,
does not necessarily correspond to the maximum area of the shear stress distribution diagram. The

10

0.00 0.05 0.10 0.15 0.20 0.25
A [mm]

Fig. 10. Full-range load—displacement curve (L = 25 mm).
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debonded length at the right d continues to increase until the right peak shear stress 7, reaches x =0
(Fig. 5j and point E in Fig. 7), hereby the interface enters the softening—debonding state. Thereafter,
the displacement reduces linearly with the load (Fig. Sk and EF in Fig. 7) until the joint completely fails
(point F in Fig. 7).

It may be noted that debonding always initiate at the right end. Even when P, is very close to P (i.e. f§
approaches 1), debonding does not occur at the left end until the debonding that initiates at the right end
reaches the left end (i.e. attainment of complete debonding of the plate from the concrete). Fig. 8 shows the
interfacial shear stress distributions (thus the propagation of debonding) at various stages for the reference
case with § =0.99. Softening starts at almost the same time at both ends: at P; =2.544 kN at the right
compared with at P; =2.567 kN at the left (Fig. 8a). When P; = 6.59 kN, the softening zone at the left
reaches the maximum length and 40 mm of the plate at the right has debonded. The loads increase quickly
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Fig. 11. Interfacial shear stress distributions at various stages (L = 10 mm < @, = 17.5 mm). (a) Elastic stress state (OA in Fig. 12). (b)
Initiation of softening at x = L (point A in Fig. 12). (c) Propagation of softening zone (AB in Fig. 12). (d) Peak shear stress at x =0
(point B in Fig. 12). (e) Linear unloading (BC in Fig. 12).
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thereafter as the debonding on the right continues to propagate but the length of the softening zone on the
left decreases (Fig. 8a). When P, increases to 36.19 kN, the left side is reversed to an elastic state. The max-
imum load of P; = 38.95 kN is reached shortly after that (Fig. 8b). When P; reduces to 34.66 kN, the left
end enters a softening state again but the shear stresses are now opposite in direction to those of the first
softening state. Thereafter, the interfacial shear stresses reduce linearly with the loads until the complete
debonding of the plate.

6.3. Failure process 3 (0 < p <1 and L close to a,)

The parameters of this example are the same as those of the reference case except that the bond length L
is reduced from 100 to 25 mm. Fig. 9 shows the interfacial shear stress distributions and propagation of
debonding at various stages. The calculated full-range load—displacement curve is shown in Fig. 10. At
early loading stages, the interface experiences progressively E (Fig. 9a and OA in Fig. 10), E-S (Fig. 9c
and AB in Fig. 10), S-E-S (Fig. 9¢ and BC in Fig. 10) states. This process is the same as that of the pre-
ceding example.

When L is close to a, as in this example, debonding does not occur before the left softening zone expe-
riences unloading and its length e reduces to 0 (Fig. 9f and point C in Fig. 10). The interface returns to an
E-S state (Fig. 9g and CD in Fig. 10). Debonding initiates at x = L when 7 decreases to 0 there (Fig. 9h and
point D in Fig. 10). Thereafter, the interface enters an E-S-D state as debonding propagates and the peak
shear stress 1y moves towards the left. The maximum load P, is attained at this stage and then unloading
occurs until complete debonding is reached, in the same manner as the preceding example (Fig. 9i-k and DE
in Fig. 10 vs Fig. 5i-k and DE in Fig. 7). Clearly, shortening the bond length L from 100 mm in the pre-
vious example to 25 mm here significantly reduces the length of segment CD in the load—-displacement
curve, without significantly affecting the ultimate load (Fig. 7 and 10).

6.4. Failure process 4 (L < a,)

In this example, the bond length is further reduced to L = 10 mm which is less than the characteristic
softening length a, = 17.5 mm. The results are shown in Figs. 11 and 12. As in the previous two examples,
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Fig. 12. Full-range load—displacement curve (L = 10 mm).



J.G. Teng et al. | International Journal of Solids and Structures 43 (2006) 5750-5778 5771

the interface experiences the E and E-S states (Fig. 11a—c and segment OAB in Fig. 12) at the early loading
stages. However, the ultimate load P; is attained at the E-S stage in this example (Fig. 11c and AB in
Fig. 12). As the length of the softening zone a continues to increase, the whole interface becomes a single
softening zone before the right end reaches debonding (Fig. 11d and point B in Fig. 12). After this, the dis-
placement reduces linearly with the load (Fig. 10e and BC in Fig. 12) until the joint completely fails (point
C in Fig. 12). There are two major differences between this example and the two previous examples, as a
result of the short bond length of 10 mm: (a) there is no softening zone starting from the left end
(x =0) and no debonding (macro-cracking) occurs until the complete failure of the interface; (b) the dis-
placement increases linearly as the load decreases in the final unloading branch, whilst the displacement
decreases with loading in the two preceding examples.

6.5. Failure process 5 (f=1)
A special case with the loads acting on both ends of the FRP being equal, i.e. Py =P, (f=1), is

discussed here. Fig. 13 shows the interfacial shear stress distributions and propagation of debonding
for L =10, 25 and 100 mm. It should be noted that for all three different bond lengths, the interface
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Fig. 13. Interfacial shear stress distributions at various stages ( = 1). (a) Elastic stress state (OA in Fig. 14). (b) Initiation of softening
at x=0 and x =L (point A in Fig. 14). (c) Propagation of softening zone at x =0 and x = L (AB in Fig. 14). (d) Initiation of
debonding at x =0 and x = L (point B in Fig. 14). (e) Propagation of debonding (after B in Fig. 14).
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Fig. 14. Load-displacement curves (f = 1).

experiences the same sequence of interfacial shear stress distribution. The corresponding load-displace-
ment curves are shown in Fig. 14, which however are very different in shape. Because both the geometry
and the loading are symmetrical, the interfacial shear stress distribution is anti-symmetrical about x =
L/2 in this case. The interface enters an S-E-S state (Fig. 13c and AB in Fig. 14) after 7 reaches t; simul-
taneously at both the left and right ends (Fig. 13b and point A in Fig. 14). Debonding initiates when t
decreases to 0 at both ends (Fig. 13d and point B in Fig. 14) and then propagates from both ends
towards the middle of the interface that is now in a D-S-E-S-D state. As both peak shear stresses t¢
continue to move towards x = L/2 from both sides, the load continues to increase. The ultimate load
becomes infinite if material failure of the plate is not considered. It should be noted that these predictions
by an idealized model for an extreme case should be interpreted with some realism in mind, as for this
extreme case, the results may be rather sensitive to certain idealisations such as the exclusion of bending
stresses in the plate. In addition, the stresses in the plate at two adjacent cracks in an RC beam are
always different, however small this difference may be. Therefore, an infinite ultimate load could not
be achieved in practice even if the material would be infinitely strong. Nevertheless, this prediction
does illustrate the significance of the interaction between the two forces acting at the both ends of the
plate.

7. Ultimate load

The effects of several key factors on the ultimate load P;, are investigated here. Fig. 15 shows the
relationship between the ultimate load and the bond length L for different f values. For a given f value,
P, . increases with L but remains constant after L reaches a certain value. Therefore, there exists an effec-
tive bond length beyond which an extension of the bond length cannot increase the ultimate load, as in a
simple pull test of FRP-to-concrete bonded joints (f = 0, Chen and Teng, 2001). The same figure is alter-
natively shown in Fig. 16, where the bond length is normalised against the characteristic softening length
ay. Tt is seen that the normalised effective length is about 1.2 for all curves except for the one with =0
which has a larger value (about 1.6). Therefore, L.~ 1.2a, represents a good estimate for the effective



J.G. Teng et al. | International Journal of Solids and Structures 43 (2006) 5750-5778 5773

14 | |
12
10 e 3=0
—— p=03
= | p=05
g 8 WWWW - - B:OG
3 Jommmm e —o =07
il // / 5 " heos
. —
. p=0.9
a LAy _—

e
7/
2
2
0
0 20 40 60 80 100

L [mm]

Fig. 15. Relationship between ultimate load and bond length for different f.

14 1
| ]
12 t
|
|
10 }
ool
=4
= 8 12 p=0
< Z}/jﬁ’“],—f B=0.3
> .~ s =0.5
SR 218 B
o :.' jrgi_ -- - B=0.6
'.' |g o B:0.7
4 . (K53 —— B=08
:§ $=0.9
2 4
5
=S
0 - <
0 1 2 3 4 5 6 7 8 9

L/a,

Fig. 16. Ultimate load versus normalised bond length for different f.

bond length for all cases unless f is close to zero. Even for the latter case, the ultimate load with a bond
length equal to this effective bond length is very close to the ultimate load with a much longer bond
length.

For the considered range of values as shown in Fig. 17a, the load parameter 5 is found to have little
(less than 0.1%) effect on the ultimate load. An investigation into the effect of # on the ultimate load over
a much larger range reveals that the ultimate load varies slowly but almost linearly with . When 7
increases from 0 to 100 (corresponding to a uniform compressive stress of 37.6 MPa in the concrete
prism), the ultimate load is reduced by only 9.7% (Fig. 17b). It may be argued that the concrete adjacent
to the FRP is in tension in a real beam. For FRP strengthened concrete tensile members, the concrete is
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clearly in tension. The effect of the tensile deformation in concrete may be investigated by imposing
tensile P; and P, (i.e. negative n values). When # decreases from 0 to —10 (corresponding to a uniform
tensile stress of 4.1 MPa in concrete at ultimate load) in this example, the ultimate load increases by
less than 1%. Since this is close to the upper limit of tensile strength of normal concrete, it may be
concluded that the concrete tensile deformation is small and beneficial and may therefore be conserva-
tively ignored.

The effect of f on the ultimate load is more clearly shown in Fig. 18. The ultimate load increases with f8
and the increase is more significant when the bond length is small. This increase is smooth and slow when f§
is small, but becomes dramatic when f§ approaches to 1. The ultimate load becomes infinite for any L when
p = 1. It may be noted that theoretically, § =1 in a pure bending zone in an RC beam. This may explain
why intermediate crack induced debonding (Teng et al., 2003b) in soffit plated RC beams normally does not
initiate within the pure bending zone but at the end of this zone where the plate stress starts to experience
more rapid variations.
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8. Characteristic softening length a,

It is demonstrated that the characteristic softening length a, is an important parameter affecting the
bond behaviour and the ultimate load. It is clear from Eqgs. (64) and (29) that it depends on the local
bond-slip properties 7, d; and Jy, the load parameters ff and #, the plate stiffness E,,,, the concrete stiffness
E.t., and the plate to concrete width ratio b,/b.. Among these,  and E,t, play the key roles. Fig. 19 shows
that a, reduces as f§ increases for the reference case. This reduction is almost linear for # < 0.6. It decreases

10 A

p

Fig. 19. Effect of load parameter § on softening length a,.
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more quickly for large f values and reduces to 0 when ff =1 at which the ultimate load becomes infinite.
Fig. 20 shows that a, increases nonlinearly with increases of plate stiffness Epz,,.

9. Conclusions

This paper has employed a simple model to investigate the behaviour of the FRP-to-concrete interface
between two adjacent cracks in flexurally strengthened RC beams. An analytical solution has been pre-
sented to predict the entire debonding process of the model under various load combinations. The realistic
bi-linear local bond-slip model is employed in the solution. The solution provides closed-form expressions
for the interfacial shear stress distribution and the load—displacement response at different loading stages,
providing a rigorous and complete theoretical basis for understanding the full-range load—displacement
behaviour of the model. It should be noted that while the emphasis of the paper is on FRP-to-concrete
bond interfaces, the analytical solution is equally applicable to similar interfaces between thin plates of
other materials (e.g. steel and aluminium) and concrete. It may even be applicable to thin plates bonded
to members of other materials such as steel and masonry provided a bi-linear local bond-slip model remains
a good approximation of the local bond behaviour. The general formulation and the solution process can
also be extended to interfaces with other local bond-slip models.

The analytical solution has identified five possible failure processes for FRP-to-concrete interfaces. The
bond length and the load parameter f are the key factors governing these failure processes. Each of these
failure processes has been examined in detail through a numerical example. The ultimate load increases
with the load parameter f§ and becomes infinite for any bond length if f is equal to 1 (i.e. when the
FRP plate is subject to equal but opposite tensile forces at both ends). Similar to the simple pull tests
of FRP-to-concrete bonded joints, an effective bond length also exists for FRP-to-concrete joints with
the FRP plate tensioned at both ends. The numerical examples show that the effective bond length is about
1.2 times the characteristic softening length @, which depends on many geometrical, material and loading
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parameters. The ultimate load of the bonded joint increases with the bond length before the effective length
is reached and remains constant thereafter.
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